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Abstract 

 The Bansuri is a wind instrument that produces sound due to the vibration 

of air particles in its air column. This project deals with the physics behind the 

bansuri and its construction. Most phenomena related to this wind instrument 

can be explained by the famous frequency-wavelength equation [fʎ=v, where f is 



frequency, ʎ (lambda) is wavelength, and v is the velocity of sound]. The 

explanation of subjective quantities of sound (like pitch and loudness), has been 

done based on principles of physics. Many facts stated in this project have been 

observed through experimentation rather than the acceptance of results from 

other sources. The reasons behind occurrences are almost always intuitive but 

require reasoning. This project aims to explain these occurrences intuitively for a 

better understanding of the flute and sound in general. 

 

Introduction 

 The Hindustani classical flute, also called the Bansuri, is a wind instrument, 

predominantly played in Northern India and Nepal. It comprises of six or seven 

holes that make up the musical octave. An octave is a definite set of frequencies. 

These frequencies are in simple mathematical whole number ratios. These 

frequencies depend on the first note of the octave. The last note of an octave is 

essentially a repetition of the first. Mathematically, a note which is an octave 

higher than its corresponding note in the preceding octave, is double the 

frequency of the predecessor. This simple ratio of 2:1, makes these notes pleasing 

when rendered in a similar manner. In general, when there is a simple 

mathematical ratio between the frequencies of two notes, the notes sound 

pleasing, and are considered musical. When there is no simple mathematical ratio 

between two notes, the notes are considered noisy and unpleasant. Keeping this 

in mind, the musical octave, consisting of seven notes and a repeating note, is 

designed such that there is always a simple mathematical ratio between the 

frequency of each of the notes. 

Objectives 
 

1)  To replicate a glass flute based on bamboo flute 

2) To understand the science behind the flute 

3) To design a glass flute for any Key. 



The Hypothesis 
 

“Frequency is dependent on the inner volume of the flute”. 

It was assumed that all bansuris of the same key, should have the same 

inside volume. This would mean that two bansuris of different lengths and 

different internal radii but having the same inner volume should have the same 

frequency (key). A bamboo flute with D# key was taken as reference. The inner 

volume of the reference was calculated. A readily available glass tube with 

appropriate dimensions was taken. The inside volume of the tube was marked out 

to match the inside volume of the reference. The ratio of length of each of the 

holes from the closed end to the entire inner length of the reference was 

calculated. Then with these ratios, the estimated position of the holes was 

predicted Based on calculations enclosed. With the predicted hole positions, a 

glass flute was developed. 

 The table shows the positions of the holes in the reference, the ratios 

calculated, and the corresponding positions in the designed model. The reference 

had a length of 370mm and inner diameter of 16mm. The model was designed 

with an inner diameter of 15.69mm (Based on availability of tube size) and 

calculated the length to be approximately 385mm. 

Name of Hole Distance of holes 
from closed end in 
Reference Bansuri 
(mm) 

Ratio of length of 
hole from closed 
end to total length 
of reference 

Corresponding 
Position of holes in 
designed model (mm) 

Mouth/Blow 2 0.01 2.1 

Ga 153.7 0.42 159.8 

Re 179.9 0.49 187.1 

Sa 206.1 0.56 214.3 

Ni 239.9 0.65 249.5 

Dha 254.9 0.70 265.1 

Pa 288.6 0.79 300.1 

Ma’ 333.6 0.91 346.9 

Volume (cc) 743.93  743.93 



 

Observations  : 

 All the notes were in tune while ascending and descending. 

 Higher octave notes were also in sync with middle octave. 

 The key of the flute was flatter compared to the reference by 

approximately 14 Hz. 

The following sheet shows the working behind the calculations. Look at the tab 

called “D#” in the excel spreadsheet, “Flute project Working 1”. 

 

Refer to “Flute project Working 1” for detailed calculations. 

Based on the observations, it was concluded that the Hypothesis was wrong. 

What Determines the Key of a Bansuri 
  

 After the hypothesis was proven wrong, an attempt was made to 

understand sound characteristics, wave motion, vibrations in closed end air 

columns. Following are the salient points in the study:  

 Sound is a mechanical, longitudinal pressure wave that consists of 

compressions and rarefactions. 

Date of experiment 07-Nov-20

Venue Vertis

Flute Key Inner 

Diameter 

(mm)

Outer 

Diameter 

(mm)

Outer L 

Total 

(mm)

ID L 

Open 

End to 

Seal

Blow 

Hole 

from 

seal

Hole 1 Hole 2 Hole 3 Hole 4 Hole 5 Hole 6 Hole 7 Volume

D# middle 16 19 420 370 2 153.7 179.9 206.1 239.9 254.9 288.6 333.6 74393

Hole Size 10.5 10 9.5 9 9 10 9 9.5

Ratios 0.01 0.42 0.49 0.56 0.65 0.69 0.78 0.90

Tube to be 

taken for D# 15.69 18.000 385 2.1 159.8 187.1 214.3 249.5 265.1 300.1 346.9 74393



 If a graph of pressure versus time of a sound wave is plotted, crests, 

troughs and points of least amplitude are obtained. 

 The crests signify the compressions of the wave, the troughs signify the 

rarefactions, and the points of least amplitude are symbolic of nodes. 

 Nodes can be defined as regions in the propagation of a sound wave at 

which amplitude is zero. In other words,  node is a region where there is no 

sound. 

 In contrast, antinodes are the points where amplitude is maximum, i.e., the 

crests and troughs. 

 The Bansuri falls under the category of Closed End Air Column. 

 In a bansuri, the node is at the closed or sealed end, as there is limited 

space for the movement of air molecules. On the other hand, the antinode 

occurs at the open end of the flue, as the molecules are free move, without 

obstruction, as shown in the figure: 

 ‘N’ represents a node, while the ‘A’ represents an antinode. 

 But according to Lord Rayleigh the antinode of a closed air column (like in a 

flute or bansuri) is just outside the open end of the air column. This is 

because the air molecules are completely free to move in this region and 

hence facilitates the formation of an antinode. Therefore, the effective 

length of the flute changes. The point where the antinode is formed is the 

effective length of the flute. This is shown in the figure. The arrow 

represents the length of end correction: 



 

Impact of Length on Frequency 
 

When all holes are closed (including the blowing hole) and air is blown from 

the open end of the bansuri, the fundamental frequency is obtained. This sound 

(displacement) is the product of the superposition of 2 waves, originating sound 

in the negative X axis and the reflected sound in the positive X axis. This is given 

by 

y  =   y1   +   y2    =a sin 2π/ʎ (vt+l) + a sin 2π/ʎ(vt-l)   =2a cos (2πvt/ʎ) sin (2πl/ʎ) 

where a=amplitude, v=velocity of sound in air, t=time and l=length of air column. 

Now, the displacement will be maximum when sin (2πl/ʎ) is maximum. This 

happens when sin (2πl/ʎ) = +/-1. Therefore, 

2π/ʎ = (2m-1) π/2, or ʎ = 4l / (2m-1) 

The frequency of a bansuri is dependent on its length. This is because 

frequency of sound is directly proportional to the velocity of sound in the medium 

(air in the case of a bansuri) and is inversely proportional to the wavelength of the 

sound wave. As velocity of sound in a medium cannot be altered, the length of 

the air column (which is directly proportional to the wavelength) must be altered 

to change the frequency. 

 

ʎ = 4l / (2m-1)    where ‘ ’ is the length of the air column, and ‘m’ is a 

natural number (i.e. m= 1,2,3...). ‘m’ represents the number of nodes. 

f = v/ʎ = (2m-1)v/4l 



Therefore, to increase the frequency, the length of the air column must be 

decreased and vice versa. This is the fundamental principle that governs the 

sounds produced by the bansuri. As the length of the flute cannot be altered, 

there are holes which can be covered to change the length of the air column. This 

is how we can easily change frequency to achieve the octave. 

Impact of Area of cross section on Frequency 

Even though the area of cross section of the flute (which is dependent on 

the radius =>A = πr2) does not directly affect its frequency, it does matter. This is 

where end correction of the flute comes into play. The end correction of the flute 

is directly proportional to the radius of the area of cross section of the flute: 

e=0.6r , where ‘e’ is the end correction, and ‘r’ the radius. 

 Therefore, the effective length of the flute becomes: 

Le = la + e, where ‘Le’ is the effective length of the flute, ‘la’ the actual length, and 

‘e’, the end correction. 

 The expression for frequency then becomes: 

f   =   (2m-1) v / 4 ( l + e)    =      (2m-1) v / 4 ( l + 0.6r) 

Impact of Area of playing holes on Frequency 

 The size of the playing holes has an impact on the frequency. If the size of 

the holes is increased, then the frequency also increases slightly. This is because, 

as one increases the size of the holes, the length of the air column decreases. This 

causes the wavelength to decrease, and hence the frequency increases. 

 Making the holes smaller has the opposite effect. 

Other Important Characteristics of Sound 

Related to the Bansuri 
 



Amplitude 

 We have already seen that the radius of cross section of the bansuri affects 

the frequency only to a small extent. But the radius occupies an important role in 

the amplitude of sound produced. Greater the radius, greater is the amplitude. 

This factor helps in making the lower notes, i.e. of lower frequency, more audible. 

Usually, with a thinner radius, the lower notes are difficult to play and be heard. 

But with a greater size of the radius, these notes can be played and heard 

relatively easily. Therefore, the Bass flutes (those which have a lower key or 

frequency) have a greater radius size. 

 But with increase in radius size, playing higher notes becomes difficult. 

Therefore, a compromise must be reached according to the key of the bansuri. 

 

Fundamental Frequency 

 The fundamental frequency of an instrument is defined as the lowest 

possible frequency it can play. For a flute or bansuri, the lowest frequency is 

obtained when all finger holes are closed, and air is blown softly. This can be 

explained by the fact that the length of the air column is maximum and therefore, 

the wavelength is maximum. This makes the frequency minimum. This can also be 

understood by the expression for frequency derived earlier. The lowest value of 

frequency will occur when ‘m’ is lowest, i.e. m=1: 

f    =    (2m-1) v / 4 ( l + 0.6r)   =   v / 4 (l + 0.6r) 

 

Key of the Bansuri 

 The key of the bansuri is the note that plays “Shadj” or “Sa” of the musical 

octave. This is achieved by covering the first three holes from the blowing hole, as 

shown in the figure: 

 



 

   FIGURE SHOWING BANSURI PLAYING SA
 

Ratio of ID to total length 

  The ideal ratio of the Inner Diameter to total length should be 1:23 or 

4.35%. In designing the D# middle flute, there was no problem in approximately 

maintaining the ratio, however there were problems while designing the F Bass 

flute as discussed later. 

 

Tuning of the Bansuri 

 The bansuri is tuned such that the note that corresponds to A in western 

music, is 440Hz. This is the reference standard in the Bansuri. The two later flutes 

designed in this project are tuned such that their corresponding A note is 440Hz. 

 

Redesigning the D# Bansuri in Glass 

After understanding the working of the flute as above, a 2nd visit was 

planned on 13 Nov 2020 to the factory to implement the D# flute. 

All flutes with the same Key will have the same effective length. The D# was 

now designed to have an effective length equal to that of the reference, as 

enclosed under 

 

Refer to tab “D# redesigned” in the excel spreadsheet, “Flute project Working 1”. 

Date of experiment 07-Nov-20

Venue Vertis

Flute Key

Inner 

Diameter

Outer 

Diameter

Outer L 

Total(cm)

ID 

LOpenEn

d to Seal

Blow 

Hole 

from seal Hole 1 Hole 2 Hole 3 Hole 4 Hole 5 Hole 6 Hole 7

D# middle 16 19 420 370 2 153.7 179.9 206.1 239.9 254.9 288.6 333.6

Hole Size 10.5 10 9.5 9 9 10 9 9.5

Effective L 374.8

Ratios 0.01 0.41 0.48 0.55 0.64 0.68 0.77 0.89

End Correction 4.707

Tube to be 

taken for D# 15.69 18.000 370.1 2.0 151.8 177.6 203.5 236.9 251.7 285.0 329.4



 

Conclusion: The model had correct frequency for its key. The remaining notes in 

the octave were also in tune. 

 

Frequency of notes in an Octave for D# 

(middle) 

 The notes in the octave have specific frequencies that bear simple whole 

number ratios. The table below gives the frequencies of the corresponding notes 

in the octave. Note that the key in this case is D# in the 5th octave (D#5). 

Note in Western 
Nomenclature 

Note in Indian Octave Frequency in Hertz (Hz) 

D#5 Sa 622.25 

F Re 698.46 

G Ga 783.99 

A Ma’ 880.00 

A# Pa 932.33 

C Dha 1046.50 

D Ni 1174.66 

D#6 Sa’ 1244.5 

 

Designing a Glass Flute without a Reference 

Using the existing ratios for hole positions, an attempt was made to design 

F Bass without a reference flute of F Bass Key. With this, the flute was designed 

with a higher inner diameter glass tube of 22 mm. Effective length was calculated 

using the fundamental frequency and was found to be 668.2 mm.  Please find 

attached the calculation sheet under “F Bass”. 



 

Refer to tab “F Bass in the excel spreadsheet “Flute project Working 1”. 

Conclusions: 

 The key and notes of the octave were in tune. 

 For designing a bansuri without any reference please look at the Java 

program given in the next section. 

Note that this program is only for bansuris having a middle key. 

 

 The picture below shows the three bansuris made based on the 

designed models. The topmost has key D# but is a little flat. The middle 

bansuri has the key D# and is in tune. The bottom most bansuri is that of F 

Bass. 

 

 

Flute Key

Inner 

Diameter

Outer 

Diameter

Outer L 

Total(cm)

ID 

LOpenEn

d to Seal

Blow 

Hole 

from seal Hole 1 Hole 2 Hole 3 Hole 4 Hole 5 Hole 6 Hole 7

Fundamen

tal F 246.94 Effective L 668.2

Wavelengt

h 1.34

Effective L 0.668 Ratios 0.01 0.41 0.48 0.55 0.64 0.68 0.77 0.89

End 

Correction 6.6

Tube to be 

taken for 

D# 22 26.000 Actual L 662 6.7 274.0 320.7 367.5 427.6 454.4 514.5 594.7



 

 

Designing a Bansuri using Java 

 With the Java program given below, any bansuri with a middle key can be 

designed. It requires a user input for the key of the flute to be designed and the 

radius of the flute to be designed. If you want to enter a key that is an accidental ( 

a sharp key or a flat key, ie., not a natural note. Eg. Csharp), capitalize the key, 

write it as a sharp (and not a flat), and do not leave a space between the key and 

the “sharp”. Do not capitalize the “sharp”. 

 For example, if you want to enter F Sharp, write it as “Fsharp”. 

Note: There are no keys/notes called “Bsharp” or “Esharp”. 

All dimensions regarding hole positions are given (in metres). 

import java.util.Scanner; 

public class BansuriDesign { 

    public static void main(String [] args) { 

        Scanner console= new Scanner(System.in); 

        System.out.print("Enter key in the flute"); 

        String s= console.next(); 

        double f=0.0; // Lowest frequency 

        double A=440.0, Asharp=466.16, B=493.88, C=523.25, Csharp=554.37, 

D=587.33, Dsharp=622.25, E=659.25, F=698.46, Fsharp=739.99, G=783.99, 

Gsharp=830.61; 

        switch(s) { 

            case "A": f=Dsharp/2; break; 

            case "Asharp": f=E/2; break; 

            case "B": f=F/2; break; 

            case "C": f=Fsharp/2; break; 

            case "Csharp": f=G/2; break; 

            case "D": f=Gsharp/2; break; 



            case "Dsharp": f=A/2;break; 

            case "E": f=Asharp/2; break; 

            case "F": f=B/2; break; 

            case "Fsharp": f=C/2; break; 

            case "G": f=Csharp/2; break; 

            case "Gsharp": f=D/2; 

        } 

        System.out.print("Enter inner radius of tube in metres as a decimal"); 

        double r=console.nextDouble(); 

        double v=330; // velocity of sound in air 

        double le=0; // Effective length 

        double la=0; // Actual length 

        double wl=0; // wavelength 

        double bh=0, h1=0, h2=0, h3=0, h4=0, h5=0, h6=0, h7=0; 

        

        wl=v/f; 

        le=wl/4; 

        la=le-(0.6*r); 

        System.out.println("Total actual length of flute is "+la+"m"); 

        bh = 0.01*le; 

        System.out.println("Length to blow hole from closed end="+bh+"m"); 

        h1 = 0.41*le; 

        System.out.println("Length to middle of 1st hole from closed end="+h1+"m"); 

        h2 = 0.48*le; 

        System.out.println("Length to middle of 2nd hole from closed 

end="+h2+"m"); 

        h3 = 0.55*le; 

        System.out.println("Length to middle of 3rd hole from closed 

end="+h3+"m"); 

        h4 = 0.64*le; 

        System.out.println("Length to middle of 4th hole from closed 

end="+h4+"m"); 

        h5 = 0.68*le; 



        System.out.println("Length to middle of 5th hole from closed 

end="+h5+"m"); 

        h6 = 0.77*le; 

        System.out.println("Length to middle of 6th hole from closed 

end="+h6+"m"); 

        h7 = 0.89*le; 

        System.out.println("Length to middle of 7th hole from closed 

end="+h7+"m"); 

    } 

} 

 

 

Conclusion 

These were the conclusions drawn from the Hypothesis: 

• The ratios of the hole positions seemed to be correct. 

• Volume is not a determinant for the frequency of a flute, and neither is the 

inner radius and hence area of cross section. 

• Only the length of the flute mattered. Since the length of the model was 

more than the reference, it had a lower key frequency. 

• Hypothesis was proven wrong. 

 The bansuri is a seemingly simple instrument with simple physics behind its 

working. Decoding this physics brought out some unexpected results. 

 

Scope for further study 

 Designing Bass flutes with greater inner diameter for easier blowing. 

 A redesigning of the ratios to enable closer finger holes. 
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